Serveur d'exploration Melampsora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.

Identifieur interne : 000082 ( Main/Exploration ); précédent : 000081; suivant : 000083

Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.

Auteurs : Thomas Ve [Australie] ; Simon J. Williams ; Ann-Maree Catanzariti ; Maryam Rafiqi ; Motiur Rahman ; Jeffrey G. Ellis ; Adrienne R. Hardham ; David A. Jones ; Peter A. Anderson ; Peter N. Dodds ; Bostjan Kobe

Source :

RBID : pubmed:24101475

Descripteurs français

English descriptors

Abstract

Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.

DOI: 10.1073/pnas.1307614110
PubMed: 24101475
PubMed Central: PMC3808616


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.</title>
<author>
<name sortKey="Ve, Thomas" sort="Ve, Thomas" uniqKey="Ve T" first="Thomas" last="Ve">Thomas Ve</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williams, Simon J" sort="Williams, Simon J" uniqKey="Williams S" first="Simon J" last="Williams">Simon J. Williams</name>
</author>
<author>
<name sortKey="Catanzariti, Ann Maree" sort="Catanzariti, Ann Maree" uniqKey="Catanzariti A" first="Ann-Maree" last="Catanzariti">Ann-Maree Catanzariti</name>
</author>
<author>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
</author>
<author>
<name sortKey="Rahman, Motiur" sort="Rahman, Motiur" uniqKey="Rahman M" first="Motiur" last="Rahman">Motiur Rahman</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
<author>
<name sortKey="Hardham, Adrienne R" sort="Hardham, Adrienne R" uniqKey="Hardham A" first="Adrienne R" last="Hardham">Adrienne R. Hardham</name>
</author>
<author>
<name sortKey="Jones, David A" sort="Jones, David A" uniqKey="Jones D" first="David A" last="Jones">David A. Jones</name>
</author>
<author>
<name sortKey="Anderson, Peter A" sort="Anderson, Peter A" uniqKey="Anderson P" first="Peter A" last="Anderson">Peter A. Anderson</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Kobe, Bostjan" sort="Kobe, Bostjan" uniqKey="Kobe B" first="Bostjan" last="Kobe">Bostjan Kobe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24101475</idno>
<idno type="pmid">24101475</idno>
<idno type="doi">10.1073/pnas.1307614110</idno>
<idno type="pmc">PMC3808616</idno>
<idno type="wicri:Area/Main/Corpus">000082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000082</idno>
<idno type="wicri:Area/Main/Curation">000082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000082</idno>
<idno type="wicri:Area/Main/Exploration">000082</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.</title>
<author>
<name sortKey="Ve, Thomas" sort="Ve, Thomas" uniqKey="Ve T" first="Thomas" last="Ve">Thomas Ve</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072</wicri:regionArea>
<wicri:noRegion>QLD 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williams, Simon J" sort="Williams, Simon J" uniqKey="Williams S" first="Simon J" last="Williams">Simon J. Williams</name>
</author>
<author>
<name sortKey="Catanzariti, Ann Maree" sort="Catanzariti, Ann Maree" uniqKey="Catanzariti A" first="Ann-Maree" last="Catanzariti">Ann-Maree Catanzariti</name>
</author>
<author>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
</author>
<author>
<name sortKey="Rahman, Motiur" sort="Rahman, Motiur" uniqKey="Rahman M" first="Motiur" last="Rahman">Motiur Rahman</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
<author>
<name sortKey="Hardham, Adrienne R" sort="Hardham, Adrienne R" uniqKey="Hardham A" first="Adrienne R" last="Hardham">Adrienne R. Hardham</name>
</author>
<author>
<name sortKey="Jones, David A" sort="Jones, David A" uniqKey="Jones D" first="David A" last="Jones">David A. Jones</name>
</author>
<author>
<name sortKey="Anderson, Peter A" sort="Anderson, Peter A" uniqKey="Anderson P" first="Peter A" last="Anderson">Peter A. Anderson</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Kobe, Bostjan" sort="Kobe, Bostjan" uniqKey="Kobe B" first="Bostjan" last="Kobe">Bostjan Kobe</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (immunology)</term>
<term>Basidiomycota (physiology)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Flax (cytology)</term>
<term>Flax (immunology)</term>
<term>Flax (microbiology)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (immunology)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>Immunoblotting (MeSH)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositols (immunology)</term>
<term>Phosphatidylinositols (metabolism)</term>
<term>Plant Cells (immunology)</term>
<term>Plant Cells (microbiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Protein Binding (immunology)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (immunologie)</term>
<term>Basidiomycota (physiologie)</term>
<term>Cellules végétales (immunologie)</term>
<term>Cellules végétales (microbiologie)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Immunotransfert (MeSH)</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Liaison aux protéines (immunologie)</term>
<term>Lin (cytologie)</term>
<term>Lin (immunologie)</term>
<term>Lin (microbiologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidyl inositols (immunologie)</term>
<term>Phosphatidyl inositols (métabolisme)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (immunologie)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Lin</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Flax</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Cellules végétales</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lin</term>
<term>Maladies des plantes</term>
<term>Phosphatidyl inositols</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Basidiomycota</term>
<term>Flax</term>
<term>Fungal Proteins</term>
<term>Host-Pathogen Interactions</term>
<term>Phosphatidylinositols</term>
<term>Plant Cells</term>
<term>Plant Diseases</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphatidylinositols</term>
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cellules végétales</term>
<term>Lin</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
<term>Plant Cells</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Phosphatidyl inositols</term>
<term>Protéines fongiques</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Immunoblotting</term>
<term>Microscopy, Confocal</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Plants, Genetically Modified</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Immunotransfert</term>
<term>Microscopie confocale</term>
<term>Modèles moléculaires</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24101475</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>43</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>17594-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1307614110</ELocationID>
<Abstract>
<AbstractText>Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ve</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Simon J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Catanzariti</LastName>
<ForeName>Ann-Maree</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rafiqi</LastName>
<ForeName>Maryam</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rahman</LastName>
<ForeName>Motiur</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Jeffrey G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hardham</LastName>
<ForeName>Adrienne R</ForeName>
<Initials>AR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Peter A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kobe</LastName>
<ForeName>Bostjan</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4BJM</AccessionNumber>
<AccessionNumber>4BJN</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010716">Phosphatidylinositols</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015151" MajorTopicYN="N">Immunoblotting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010716" MajorTopicYN="N">Phosphatidylinositols</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">avirulence protein</Keyword>
<Keyword MajorTopicYN="N">innate immunity</Keyword>
<Keyword MajorTopicYN="N">lipid binding</Keyword>
<Keyword MajorTopicYN="N">plant cell internalization</Keyword>
<Keyword MajorTopicYN="N">plant disease resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24101475</ArticleId>
<ArticleId IdType="pii">1307614110</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1307614110</ArticleId>
<ArticleId IdType="pmc">PMC3808616</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Cell Biol. 2001 Feb;11(2):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2898-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jan;23(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19958138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1388-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Jul 1;123(Pt 13):2190-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 May;26(5):528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Jun;26(6):611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Apr;8(4):e23865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23425855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):2017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 27;469(7331):559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 14;286(41):35834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 20;478(7369):395-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt 12):1603-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):483-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22483402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):477-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Anderson, Peter A" sort="Anderson, Peter A" uniqKey="Anderson P" first="Peter A" last="Anderson">Peter A. Anderson</name>
<name sortKey="Catanzariti, Ann Maree" sort="Catanzariti, Ann Maree" uniqKey="Catanzariti A" first="Ann-Maree" last="Catanzariti">Ann-Maree Catanzariti</name>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
<name sortKey="Hardham, Adrienne R" sort="Hardham, Adrienne R" uniqKey="Hardham A" first="Adrienne R" last="Hardham">Adrienne R. Hardham</name>
<name sortKey="Jones, David A" sort="Jones, David A" uniqKey="Jones D" first="David A" last="Jones">David A. Jones</name>
<name sortKey="Kobe, Bostjan" sort="Kobe, Bostjan" uniqKey="Kobe B" first="Bostjan" last="Kobe">Bostjan Kobe</name>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
<name sortKey="Rahman, Motiur" sort="Rahman, Motiur" uniqKey="Rahman M" first="Motiur" last="Rahman">Motiur Rahman</name>
<name sortKey="Williams, Simon J" sort="Williams, Simon J" uniqKey="Williams S" first="Simon J" last="Williams">Simon J. Williams</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Ve, Thomas" sort="Ve, Thomas" uniqKey="Ve T" first="Thomas" last="Ve">Thomas Ve</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000082 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000082 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24101475
   |texte=   Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24101475" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Mon Nov 2 18:19:24 2020. Site generation: Thu Feb 15 23:05:49 2024